Genome-wide evidence for selection acting on single amino acid repeats.
نویسندگان
چکیده
Low complexity and homopolymer sequences within coding regions are known to evolve rapidly. While their expansion may be deleterious, there is increasing evidence for a functional role associated with these amino acid sequences. Homopolymer sequences are thought to evolve mostly through replication slippage and, therefore, they may be expected to be longer in regions with relaxed selective constraint. Within the coding sequences of eukaryotes, alternatively spliced exons are known to evolve under relaxed constraints in comparison to those exons that are constitutively spliced because they are not included in all of the mature mRNA of a gene. This relaxed exposure to selection leads to faster rates of evolution for alternatively spliced exons in comparison to constitutively spliced exons. Here, we have tested the effect of splicing on the structure (composition, length) of homopolymer sequences in relation to the splicing pattern in which they are found. We observed a significant relationship between alternative splicing and homopolymer sequences with alternatively spliced genes being enriched in number and length of homopolymer sequences. We also observed lower codon diversity and longer homocodons, suggesting a balance between slippage and point mutations linked to the constraints imposed by selection.
منابع مشابه
Natural selection drives the accumulation of amino acid tandem repeats in human proteins.
Amino acid tandem repeats are found in a large number of eukaryotic proteins. They are often encoded by trinucleotide repeats and exhibit high intra- and interspecies size variability due to the high mutation rate associated with replication slippage. The extent to which natural selection is important in shaping amino acid repeat evolution is a matter of debate. On one hand, their high frequenc...
متن کاملSingle Amino Acid Repeats in the Proteome World: Structural, Functional, and Evolutionary Insights
Microsatellites or simple sequence repeats (SSR) are abundant, highly diverse stretches of short DNA repeats present in all genomes. Tandem mono/tri/hexanucleotide repeats in the coding regions contribute to single amino acids repeats (SAARs) in the proteome. While SSRs in the coding region always result in amino acid repeats, a majority of SAARs arise due to a combination of various codons rep...
متن کاملGenome-wide survey of natural selection on functional, structural, and network properties of polymorphic sites in Saccharomyces paradoxus.
BACKGROUND To characterize the genetic basis of phenotypic evolution, numerous studies have identified individual genes that have likely evolved under natural selection. However, phenotypic changes may represent the cumulative effect of similar evolutionary forces acting on functionally related groups of genes. Phylogenetic analyses of divergent yeast species have identified functional groups o...
متن کاملComparative analysis of amino acid repeats in rodents and humans.
Amino acid tandem repeats, also called homopolymeric tracts, are extremely abundant in eukaryotic proteins. To gain insight into the genome-wide evolution of these regions in mammals, we analyzed the repeat content in a large data set of rat-mouse-human orthologs. Our results show that human proteins contain more amino acid repeats than rodent proteins and that trinucleotide repeats are also mo...
متن کاملThe Pattern of Linkage Disequilibrium in Livestock Genome
Linkage disequilibrium (LD) is bases of genomic selection, genomic marker imputation, marker assisted selection (MAS), quantitative trait loci (QTL) mapping, parentage testing and whole genome association studies. The Particular alleles at closed loci have a tendency to be co-inherited. In linked loci this pattern leads to association between alleles in population which is known as LD. Two metr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome research
دوره 20 6 شماره
صفحات -
تاریخ انتشار 2010